

RAID Option ROM

Product Implementation Guide

Version 1.8
Date: 08/19/2009

Copyright © 2009, Promise Technology, Inc.
All Rights Reserved

2
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Revision History

Version Date Author Notes
1.8 2009/08/19 Adam Hsu (1)To modify the description about AMD RAID / AHCI

Common Command Interface function in Chapter 5.
(2)To add “Interface Entry Point Format” V 2.0
description in Chapter 5.

1.7 2009/07/14 Adam Hsu (1)To add description about AMD RAID / AHCI Common
Command Interface function.
->Chapter 5
(2)Modify the description OEM Int13h / Ah=25h sub-
function.

1.6 2009/01/07 Adam Hsu (1)To add the OEM Int13h/Ah=25h
sub-function description.
-> Chapter 4, page 9,10,13

1.5 2008/02/13 Adam Hsu (1)To change the search size from 32Kbytes to 1Kbytes
during searching the MISC.BIN
(2)To add the SBIOS PMM function using description
during preparing the temp buffer for MISC.BIN by
OpROM.
(3)To add the summary memory using table during
Init-time and Run-time.

1.4 2007/10/19 Adam Hsu (1)How to reserve memory by Promise BIOS?
(2)Where does the Promise BIOS search the misc.bin
?
(3)Which memory does the Promise BIOS use to
backup the conventional memory?

1.3

2007/10/12 Adam Hsu (1) To change the implementation guide to 1.3
(2) To change the UI Part name to MISC.BIN and

LoadTime Part name to SATA.BIN
(3) To add the method and pictures to describe how to

allocate the EBDA and search the misc.bin.

1.2 2007/10/05 Adam Hsu Added load time part code will use DOS conventional
area

1.1 2007/08/02 Grace Chang Updated for SB650/SB700/SB750

1.0 2006/10/17 Sean Wang Initial for SB600

3
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Table of Contents

1. Scope ... 4

2. Binary Implementation .. 4

3. Array Detect .. 9

4. INT 13h Function Definitions .. 9

4.1. Reset Disk Subsystem ...11

4.2. Get Status of Last Operation ...11

4.3. Read Sectors into Memory ..11

4.4. Write Sectors from Memory ...11

4.5. Verify Sectors ... 12

4.6. Get Drive Parameters ... 12

4.7. Get Disk Type .. 12

4.8. Get each physical hard disk information by ATA identify command 13

4.9. Check Extensions Present .. 14

4.9. Extended Read ... 14

4.10. Extended Write... 14

4.11. Extended Verify Sectors ... 15

4.12. Get Device Parameters ... 15

4.13. Terminate Disk Emulation ... 15

5. AMD RAID / AHCI Common Command Interface... 17

5.1-What is this function? ... 17

5.2-How caller prepares the packet and pass to OPROM? 17

4
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

 1. Scope
This guide assumes that the reader is familiar with the conventional INT 13h interface, the usage
of the BIOS Device Parameter Table, Bootable CD-ROM Format Specification and the basic
operation of mass storage devices. This guide describes in detail how to implement the option
ROM BIOS and the INT13h functions.

 2. Binary Implementation
The binary file consists of two parts. One part is SATA.BIN which is for initialization and runtime
use, another part is MISC.BIN which includes the user interface of the FastBuild (tm) Utility and
other runtime code.

When the option ROM is called, the SATA.BIN will run first and search and copy the MISC.BIN to
the conventional memory prepared by SBIOS PMM function or by the OpROM. After the
initialization has been finished, it will prompt user to press “Ctrl+F” if user want to enter the
configuration utility.

Besides, in order to reduce the Option ROM size in runtime stage, a part of MISC.BIN code will be
put in EBDA area after load-time init stage.

The binary will be released in two Split ROMs.

1. Split ROMs

SATA.BIN

MISC.BIN

5
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Note:

This dynamic UI loading mechanism requires at least the UI part being left uncompressed in the
system BIOS. Otherwise the FastBuild (tm) Utility will unable to show UI properly.

Besides, the location of MISC.BIN is up to the system BIOS. For example, current AMD
SB700/750 system bios will load MISC.BIN at around 0FFF00000h, SATA.BIN will search for
“MISC.SIG” signature started from 0FFF00000h and ended at 0FFFFFFFFh by 1Kbytes.

However, for current Promise BIOS design mechanism, the SATA.BIN will search the MSIC.BIN
from address 0 ~ 7FFFFh first, if the MISC.BIN can’t be found, the SATA.BIN will try to search
again from 0FFF00000h to 0FFFFFFFFh.

If the MISC.BIN was found, the SATA.BIN will backup one conventional memory area and then
copy the MISC.BIN into it. After Option ROM Init is finished, the SATA.BIN will restore the
conventional memory area that was backup by SATA.BIN before.

The principle of backup the conventional memory is the Promise BIOS will copy the conventional
memory to the high memory address that is 06400000h and this copied range is up to the part of
MISC.BIN file size.

0FFFFFFFFh

SATA.BIN

0FFF00000h

MISC.BIN

0FFFFFh

00000h

SATA.BIN

0A0000h

This Area is the
new EBDA Area

A Part of MISC.BIN
Note:

This memory area will be
prepared by SBIOS PMM
function or by the OpROM.

Below 1MB

A Part of MISC.BIN

00000000h

Copy the MISC.BIN

6
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

How to allocate the EBDA area by SATA.BIN

0A0000h

Original EBDA Area

0A0000h

A part of MISC.BIN.

Note1:
This memory area
will be prepared by
SBIOS PMM
function or by the
OpROM.

Note2:
If the SBIOS PMM
function fails, this
area will be backup
first before the
SATA.BIN use.
Then, it will be
restored after
SATA.BIN Init stage.

A part of MISC.BIN

Original EBDA Area

The data area for
SATA.BIN using

SATA.BIN

SATA.BIN

New EBDA Area

Moved by Promise BIOS

1. The gray, green and blue areas are used by Promise BIOS

2. The mark 2 of blue area will be copied to high memory

06400000h first before SATA.BIN copy the MISC.BIN.

3. This start address of this mark 2 of blue area is up to EBDA

segment address.
For example, to suppose the EBDA segment address is
00920000h and the size of mark 2 of blue area is 2000h, so
the start address of mark 2 of blue area is the EBDA segment
address subtract the 2000h.

1

2

FIG .1

7
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

The summary of memory range using by OpROM :

Init-Time EBDA Segment Address : X (Linear address)

Init-Time EBDA Size (Got from byte 0) : Y

Run-Time EBDA Segment Address : W (Linear address)

MISC.BIN (CAM Module) Size : Z

MISC.BIN (UI Module and other modules) Size : P

 PMM OK PMM Fail

Init-Time Start
Address

Run-Time Start
Address

Init-Time Start
Address

Run-Time Start
Address

MISC.BIN (CAM Module) X + Y W + Y X + Y W + Y

MISC.BIN (UI Module
and other module)

Depend on
SBIOS PMM

function

None X - P None

SATA Bin Data Area X + Y + Z W + Y + Z X + Y + Z W + Y + Z

8
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Besides, in order to improve the driver performance, the Promise BIOS will use the reserved
memory mechanism to do it.

The principle of this mechanism relates to INT15h / E820h. In the runtime stage, the Promise
BIOS will hook the system BIOS INT15h / E820h function. If any user calls this function, the
Promise BIOS will handle it and pass the address reported by system BIOS to used. The Promise
BIOS just ONLY handle the OS memory area (memory type = 1).

4GB - 1

0

Reserved by system BIOS and the
memory type doesn’t equal to 1

1MB

Reserved by system BIOS and the
memory type equals to 1

Reserved by system BIOS and the
memory type doesn’t equal to 1

Reserved by system BIOS and the
memory type equals to 1

This area will be reserved by the Promise BIOS
and it won’t overlay the ACPI table.
Besides, the address reported by system BIOS
will be changed to new address value.

New address = address reported by system
BIOS – reserved memory size.

Reserved Memory

9
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

 3. Array Detect
In RAID mode, the last logical cylinder of a hard drive is in the MDD area and will be protected
from read/write by system BIOS or user. In NONE-RAID mode, system BIOS can read this flag to
check whether the attached hard drive has been configured to RAID mode.

 4. INT 13h Function Definitions
The option ROM will follow the BIOS Boot Specification V1.01 to implement BCV entries and the
INT13h service routine which is complaint with BIOS Enhanced Disk Drive Services 2.0 or 2.1 will
be provided as Table 1.

Moreover, the Promise RAID option ROM (starts from 3.0.1540.50 version) also provides OEM
Int13h function call except for standard Int13h.

Currently, the option ROM ONLY supports OEM Int13h / AH=25h to get each physical hard disk
information on each port by ATA identify command.

Those Reserved functions will always return a success while any other function number beyond
Table 1 will be regarded as an Invalid function and always returns with an error code 01h.

10
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Function
Number(AH)

Function

00h Reset Disk Subsystem

01h Get Status of Last Operation

02h Read Sectors into Memory

03h Write Sectors from Memory

04h Verify Sectors

05h Reserved.

08h Get Drive Parameters

09h Reserved.

0Ch Reserved.

0Dh Reserved.

10h Reserved.

11h Reserved.

14h Reserved.

15h Get Disk Type

25h Get physical hard disk information
by ATA identify command

41h Check Extensions Present

42h Extended Read

43h Extended Write

44h Extended Verify Sectors

47h Reserved.

48h Get Device Parameters

4Bh Terminate Disk Emulation

Table 1

11
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

4.1. Reset Disk Subsystem
Entry:

AH - 00h
DL - BIOS device number

Exit:
carry clear - Reset successful

AH - 0
This function will always return success.

4.2. Get Status of Last Operation
Entry:

AH - 01h
DL - BIOS device number

Exit:
carry clear - Last command was successful

AH - 0
AL - Status of last INT 13h operation

This function shall be used to return the status of the last INT 13 command executed. This function
will always return success.

4.3. Read Sectors into Memory
Entry:

AH - 02h
AL - Number of sectors to read, shall be greater than 0 and less than 128
CH - Low order 8 bits of the cylinder number
CL - Bits 0-5 specify the sector number, bits 6-7 are the high order 2 bits of the cylinder
DH - Head number
DL - BIOS device number
ES:BX - Pointer to destination buffer in memory

Exit:
carry clear - Read was successful

AH - 0
AL - Number of sectors read
ES:BX - Buffer filled with read data

carry set
AH - Error code
ES:BX - Pointer to buffer partially filled with read data

This function shall be used to read data from the device into host memory buffer pointed to by
ES:BX.

4.4. Write Sectors from Memory
Entry:

AH - 03h
AL - Number of sectors to write, shall be greater than 0 and less than 128
CH - Low order 8 bits of the cylinder number
CL - Bits 0-5 specify the sector number, bits 6-7 are the high order 2 bits of the cylinder
DH - Head number.
DL - BIOS device number
ES:BX - Pointer to source buffer in memory

Exit:
carry clear - Read was successful

AH - 0
AL - Number of sectors written

carry set
AH - Error code

12
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

This function shall be used to transfer data from the host buffer pointed to by ES:BX to the device.

4.5. Verify Sectors
Entry:

AH - 04h
AL - Number of sectors to verify, shall be greater than 0 and less than 128
CH - Low order 8 bits of the cylinder number
CL - Bits 0-5 specify the sector number, bits 6-7 are the high order 2 bits of the cylinder
DH - Head number.
DL - BIOS device number

Exit:
carry clear - Read was successful

AH - 0
AL - Number of sectors verified

carry set
AH - Error code

This function shall be used to check the sectors in the specified range on the device for errors. No
data is transferred between the host and device by this command.

4.6. Get Drive Parameters
Entry:
AH - 08h

DL - BIOS device number
Exit:

carry clear - Get Drive Parameters was successful
AH - 00h
BL - Vendor Specific
CH - Low order 8 bits of the maximum cylinder number
CL - Bits 0-5 specify the maximum sector number, bits 6-7 are the high order 2 bits of the

maximum cylinder number
DH - Maximum head number
DL - Total number of INT 13h devices with an INT 13h device number greater than 7Fh

carry set
AH - Error code

This function shall be used to find the CHS geometry used by INT 13 functions 2, 3, and 4 to
access the drive.

4.7. Get Disk Type
Entry:

AH - 15h
DL - BIOS device number

Exit:
carry clear - Request was successful

AH - 03h = Hard Drive present
CX:DX - Number of sectors on the media

carry set
AH - Error code

This function shall be used to find the device type. This function is called by some versions of DOS
during the boot process.

13
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

4.8. Get each physical hard disk information by ATA identify command

Entry:

AH - 25h

ECX - “AMD_” (Signature)

DL – Drive Number

DH – Low 4-bit (SATA port number)

 – High 4-bit (Target ID if PM exists)

ES: BX - Transfer buffer (512 bytes)

Exit:

carry clear

ES: BX – Transfer buffer (512 bytes)

carry set

AL - 0FFh (Drive doesn’t exist on current port)

AH - Error code (80h, Drive fail to respond)

This function can be used to get each physical hard disk information by ATA identify command.

Moreover, this sub-function call can be executed on init time or runtime stage as long as the

caller prepare the suitable input parameter and the option ROM Int13h had been hooked.

However, the user still need to care two keys if want to use this sub-function call.

(1) If want to use this sub-function, first, the caller needs to find the suitable drive number (DL)

value which can be accepted by OPROM and pass it to the OPROM to get the identify data

from device.

(2) If there is no any hard disks and ONLY SATAPI device on the platform, this sub-function

call can NOT work cause of the option ROM won’t treat the SATAPI as logical drive

(80h,81h…).

14
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

4.9. Check Extensions Present
Entry:

AH - 41h

BX - 55AAh

DL - BIOS device number

Exit:

carry clear

AH - Version of extensions = 20h/21h

AL - Internal use only

BX - AA55h/55AAh

CX - Interface support bit map

carry set

AH - Error code (01h, Invalid Command)

This function shall be used to check for the presence of INT 13h extensions. If CF=1b, the

extensions are not supported for the requested device. If CF=0b, BX shall be checked to

confirm that it contains the value AA55h indicating that the extensions are present. If BX =

AA55h, the value of CX shall be checked to determine what subsets of this interface are

supported for the requested device. At least one subset shall be supported. The version of the

extensions shall be 20h or 21h. This indicates that which INT 13h extensions this function is

compliant with.

4.9. Extended Read
Entry:

AH - 42h

DL - BIOS device number

DS:SI - Device address packet

Exit:

carry clear

AH - 0

carry set

AH - Error code

This function shall transfer sectors from the device to memory.

4.10. Extended Write
Entry:

AH - 43h

AL - 0 or 1, write with verify off; 2, write with verify on

DL - BIOS device number

15
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

DS:SI - Device address packet

Exit:

carry clear

AH - 0

carry set

AH - Error code

This function shall transfer sectors from memory to the device.

4.11. Extended Verify Sectors
Entry:

AH - 44h

DL - BIOS device number

DS:SI - Device address packet

Exit:

carry clear

AH - 0

carry set

AH - Error code

This function verifies sectors without transferring data between the device and system

memory.

4.12. Get Device Parameters
Entry:

AH - 48h

DL - BIOS device number

DS:SI - address of result buffer

Exit:

carry clear

AH - 0

DS:SI - address of result buffer

carry set

AH - Error code

This function returns default device parameters. It shall be mandatory

regardless of the interface subset that is supported.

4.13. Terminate Disk Emulation
Entry:

AH - 4B

16
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

AL = 00, Return Status and Terminate Emulation

AL = 01, Return Status only, Do Not Terminate Emulation

DL = Drive number to terminate, 7F = Terminate all

DS:SI - Empty Specification Packet

Exit:

carry clear - System released

AH - 0

DS:SI - Completed Specification Packet

carry set - System not in emulation mode

AH - Error code

DS:SI - Completed Specification Packet

This function returns the system to a configuration that matches a normal floppy or hard disk

boot.

17
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

 5. AMD RAID / AHCI Common Command Interface

5.1-What is this function?

This RAID / AHCI common command interface is like the ATA / ATAPI command

pass-through.

In the other words, in the RAID or AHCI mode, if the caller wants to submit the ATA or ATAPI

command to the device like SMART or READ / WRITE, caller will prepare one packet and this

packet describes how the ATA / ATAPI command be set. Then, to pass this packet to OPROM

and the OPROM will return the necessary information to caller finally.

Especially, this interface is helpful for some customers who own their specific SBIOS feature.

5.2-How caller prepares the packet and pass to OPROM?

First, the OPROM will prepare one entry point for this function. The entry point in OPROM is

located at 0x48 – 0x4B then caller can prepare the necessary packet and pass it to the entry

point provided by OPROM.

However, the format version of “Interface Entry Point” has V1.0 and V2.0.The difference

between them is V2.0 version will support one “Device Mapping Table” at 0x4D-0x4E and it will

be used to tell caller what / where the device is on current platform. Moreover, the caller can

refer to this table to submit ATA / ATAPI command to any device via AMD AHCI / RAID

Common Command Interface. So, caller need to make sure the “Interface Entry Point” format

version is V2.0 before using AMD AHCI / RAID Common Command Interface.

18
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Interface Entry Point Format
Locate Description

0x4B-0x4A ODD_AccessEntry_Seg: Word, Entry Point Segment, locate at Oprom segment:offset

0x4B-0x4A.

0x49-0x48 ODD_AccessEntry_Off: Word, Entry Point Segment, locate at Oprom segment:offset

0x49-0x48.

Locate Description

0x4C Version 1.00 Format

ODD Bit Map: Byte, Record ODD exist position. Locate at Oprom segment:offset

0x4C.

Each bit set means ODD exist, otherwise ODD doesn’t exist at this position.

ODD Position Bitmap Input ODD channel value

BIT0 0 (if BIOS wants read “BIT0” odd, the input value must 0)

BIT1 1 (if BIOS wants read “BIT0” odd, the input value must 1)

BIT2 2 (if BIOS wants read “BIT0” odd, the input value must 2)

… …

BIT7 Must 0 (our chip only MAX support 6 ports) (SB700

only)

Version 2.00 Format

BIT0-BIT6 Reserved

BIT7 Must 1 indicate match spec version 2.00 (SB700 or

later)

0x4E-

0x4D

Version 2.00 Using

Device Mapping Table offset : Word, offset of the Exist Device Mapping Table.

Max supports 10 devices.

Input :
ecx : '_AMD'
edx : '_IRB'
es:bx : irb structure

Output:
CY : Error
NC : Successful

19
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

Irb Structure definition

struct{

 UINT8 FeaturesReg;

 UINT8 Features_Exp;

 UINT8 SectorCountReg;

 UINT8 SectorCount_Exp;

 UINT8 SectorNumberReg;

 UINT8 SecNum_Exp;

 UINT8 CylLowReg;

 UINT8 CylLow_Exp;

 UINT8 CylHighReg;

 UINT8 CylHigh_Exp;

 UINT8 DriveHeadReg;

 UINT8 CommandReg;

 UINT8 bReserved[4];

} IDE_TASK_FILE_;

Receive_FIS_buffer definition

typedef struct _AHCI_D2H_REGISTER_FIS

{

 UINT8 FisType; // 0x34

 UINT8 PM:4 ;

 UINT8 Reserved1 :2;

 UINT8 I:1;

 UINT8 Reserved2 :1;

 UINT8 Status;

 UINT8 Error;

 UINT8 SectorNumber;

 UINT8 CylLow;

 UINT8 CylHigh;

 UINT8 Dev_Head;

 UINT8 SectorNum_Exp;

 UINT8 CylLow_Exp;

 UINT8 CylHigh_Exp;

 UINT8 Reserved;

 UINT8 SectorCount;

 UINT8 SectorCount_Exp;

 UINT8 Reserved3[2];

 UINT8 Reserved4[4];

} AHCI_D2H_REGISTER_FIS, *PAHCI_D2H_REGISTER_FIS;

struct{

 UINT8 Irb_Function;

 UINT8 Irb_Status;

 UINT8 Channel; // physical port

 UINT8 TargetId; // Port Multiplier port

 UINT32 Irb_Flags;

 UINT32 Receive_FIS_buffer; //physical address, word boundary

 UINT32 DataTransferLength; //buffer length, length must be even,

 //less than 64k

 UINT32 DataBuffer; //input/output buffer, physical address

 //word boundary

 union {

 //

 // ATA Task file register contents

 //

 IDE_TASK_FILE_ IdeTaskFile;

 //

 // CDB for ATAPI devices

20
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

 //

 UINT8 Cdb[16];

 };

} IRB;

//

// irb flags

//

#define IRB_FLAGS_DATA_IN_ 0

#define IRB_FLAGS_DATA_OUT_ 1

//

// irb status

//

#define IRB_STATUS_PENDING_ 0x0

#define IRB_STATUS_SUCCESS_ 0x1

#define IRB_STATUS_DATALENGTH_MISMATCH_ 0x2

#define IRB_STATUS_DEVICE_ERROR_ 0x3

#define IRB_STATUS_INVALID_REQUEST_ 0x4

#define IRB_STATUS_BUS_RESET_ 0x5

#define IRB_STATUS_SELECTION_TIMEOUT_ 0x6

#define IRB_STATUS_BUSY_ 0x7

#define IRB_STATUS_ABORT_ 0x8

//

// irb function

//

#define IRB_FUNCTION_ATA_COMMAND_ 0

#define IRB_FUNCTION_ATAPI_COMMAND_ 1

*note: This item depends on COMMAND type. If it is CDB formats defined in SCSI

documents, using IRB_FUNCTION_ATAPI_COMMAND_. If commands defined in ATA/ATAPI

specification, using IRB_FUNCTION_ATA_COMMAND_.

//Ex for Identify Cmd.

// clear irb buffer

 zero_irb();

//identify is ATA cmd

 irb->Function = IRB_FUNCTION_ATA_COMMAND_;

//initial irb status

 irb->IrbStatus = IRB_STATUS_PENDING_;

// it is read data command

 irb->IrbFlags = IRB_FLAGS_DATA_IN_

// identify data is 256 words

 irb->DataTransferLength = 512

// return data buffer

 irb->DataBuffer = 0x12345678

// match AT/ATAPI spce

 irb->IdeTaskFile.bDriveHeadReg = 0xa0;

 irb->IdeTaskFile.bCommandReg = 0xEC or 0xA1;

// which port / target you want to read

 irb->Channel = portnumber;

 irb->TargetId = TargetID;

// jump into entry_point

 call ENTRY_point

//Ex for S.M.A.R.T
 irb->Function = IRB_FUNCTION_ATA_COMMAND_;

 irb->IrbStatus = IRB_STATUS_PENDING_;

 irb->IrbFlags = IRB_FLAGS_DATA_OUT_;

 irb->DataTransferLength = 0;

 irb->DataBuffer = 0x12345678;

 irb->IdeTaskFile.bCommandReg = 0xB0;

 irb->IdeTaskFile.bFeaturesReg = 0xD8; // enable S.M.A.R.T.

21
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

 irb->IdeTaskFile.bCylLowReg = 0x4F;

 irb->IdeTaskFile.bCylHighReg = 0xC2;

 irb->IdeTaskFile.bDriveHeadReg = 0xa0;

 irb->Channel = portnumber;

 irb->TargetId = TargetID;

// Check SMART COMMAND STS
 PAHCI_D2H_REGISTER_FIS pD2H = irb->Receive_FIS_buffer;

 if (pD2H->CylHigh == 0xC2 &&

 pD2H->CylLow == 0x4F)

 {

 // smart ok

 }

 else

 // smart fail

//Ex for ATAPI Read
 irb->Function = IRB_FUNCTION_ATAPI_COMMAND_;

 irb->IrbStatus = IRB_STATUS_PENDING_;

 irb->IrbFlags = IRB_FLAGS_DATA_IN_;

 irb->DataTransferLength = 2048;

 irb->DataBuffer = 0x12345678;

 irb->Cdb[0] = 0x28; //ATAPI_READ

// read block 17

 irb->Cdb[2] = 0; //

 irb->Cdb[3] = 0; //

 irb->Cdb[4] = 0; //

 irb->Cdb[5] = 0x11; //

// we read 1 logical block.

 irb->Cdb[7] = 0x0;

 irb->Cdb[8] = 0x1;

 irb->Channel = portnumber;

 irb->TargetId = TargetID;

FIS defination

22
Version 1.8 copyright © 2009 Promise Technology All Rights Reserved.

0 3 4 7 8 9 15

Command Head BIT 5

Device Mapping Table Format (V2.0)
Format:

Reserved Reserved D Target Port

Table End Value: 0XFFFF

D flag: 0 – Hdd / 1 – Odd

Port: Indicate current port, Max value is 6

Target: If PM exist, it indicate the which port on PM, Otherwise it should be zero. Max value
is 0xE.

Input parameter, orginal is port number, byte, now the byte high 4 bit, target id. Low 4 bit, port
number.

